The Unified Modeling Language (UML)- part 8

Communication Diagrams
A communication diagram, formerly called a collaboration diagram, is an interaction diagram that shows similar information to sequence diagrams but its primary focus is on object relationships.

On communication diagrams, objects are shown with association connectors between them. Messages are added to the associations and show as short arrows pointing in the direction of the message flow. The sequence of messages is shown through a numbering scheme.

The following two diagrams show a communication diagram and the sequence diagram that shows the same information. Although it is possible to derive the sequencing of messages in the communication diagram from the numbering scheme, it isn’t immediately visible. What the communication diagram does show quite clearly though, is the full set of messages passed between adjacent objects.

Sequence Diagrams

A sequence diagram is a form of interaction diagram which shows objects as lifelines running down the page, with their interactions over time represented as messages drawn as arrows from the source lifeline to the target lifeline. Sequence diagrams are good at showing which objects communicate with which other objects; and what messages trigger those communications. Sequence diagrams are not intended for showing complex procedural logic.

A lifeline represents an individual participant in a sequence diagram. A lifeline will usually have a rectangle containing its object name. If its name is “self”, that indicates that the lifeline represents the classifier which owns the sequence diagram.

Sometimes a sequence diagram will have a lifeline with an actor element symbol at its head. This will usually be the case if the sequence diagram is owned by a use case. Boundary, control and entity elements from robustness diagrams can also own lifelines.

Messages are displayed as arrows. Messages can be complete, lost or found; synchronous or asynchronous; call or signal. In the following diagram, the first message is a synchronous message (denoted by the solid arrowhead) complete with an implicit return message; the second message is asynchronous (denoted by line arrowhead), and the third is the asynchronous return message (denoted by the dashed line).

Execution Occurrence
A thin rectangle running down the lifeline denotes the execution occurrence, or activation of a focus of control. In the previous diagram, there are three execution occurrences. The first is the source object sending two messages and receiving two replies; the second is the target object receiving a synchronous message and returning a reply; and the third is the target object receiving an asynchronous message and returning a reply.

Self Message
A self message can represent a recursive call of an operation, or one method calling another method belonging to the same object. It is shown as creating a nested focus of control in the lifeline’s execution occurrence.

Lost and Found Messages
Lost messages are those that are either sent but do not arrive at the intended recipient, or which go to a recipient not shown on the current diagram. Found messages are those that arrive from an unknown sender, or from a sender not shown on the current diagram. They are denoted going to or coming from an endpoint element.

Lifeline Start and End
A lifeline may be created or destroyed during the timescale represented by a sequence diagram. In the latter case, the lifeline is terminated by a stop symbol, represented as a cross. In the former case, the symbol at the head of the lifeline is shown at a lower level down the page than the symbol of the object that caused the creation. The following diagram shows an object being created and destroyed.

Duration and Time Constraints
By default, a message is shown as a horizontal line. Since the lifeline represents the passage of time down the screen, when modelling a real-time system, or even a time-bound business process, it can be important to consider the length of time it takes to perform actions. By setting a duration constraint for a message, the message will be shown as a sloping line.

Combined Fragments

It was stated earlier that sequence diagrams are not intended for showing complex procedural logic. While this is the case, there are a number of mechanisms that do allow for adding a degree of procedural logic to diagrams and which come under the heading of combined fragments. A combined fragment is one or more processing sequence enclosed in a frame and executed under specific named circumstances. The fragments available are:

  • Alternative fragment (denoted “alt”) models if…then…else constructs.
  • Option fragment (denoted “opt”) models switch constructs.
  • Break fragment models an alternative sequence of events that is processed instead of the whole of the rest of the diagram.
  • Parallel fragment (denoted “par”) models concurrent processing.
  • Weak sequencing fragment (denoted “seq”) encloses a number of sequences for which all the messages must be processed in a preceding segment before the following segment can start, but which does not impose any sequencing within a segment on messages that don’t share a lifeline.
  • Strict sequencing fragment (denoted “strict”) encloses a series of messages which must be processed in the given order.
  • Negative fragment (denoted “neg”) encloses an invalid series of messages.
  • Critical fragment encloses a critical section.
  • Ignore fragment declares a message or message to be of no interest if it appears in the current context.
  • Consider fragment is in effect the opposite of the ignore fragment: any message not included in the consider fragment should be ignored.
  • Assertion fragment (denoted “assert”) designates that any sequence not shown as an operand of the assertion is invalid.
  • Loop fragment encloses a series of messages which are repeated.

The following diagram shows a loop fragment.

There is also an interaction occurrence, which is similar to a combined fragment. An interaction occurrence is a reference to another diagram which has the word “ref” in the top left corner of the frame, and has the name of the referenced diagram shown in the middle of the frame.

A gate is a connection point for connecting a message inside a fragment with a message outside a fragment. EA shows a gate as a small square on a fragment frame. Diagram gates act as off-page connectors for sequence diagrams, representing the source of incoming messages or the target of outgoing messages. The following two diagrams show how they might be used in practice. Note that the gate on the top level diagram is the point at which the message arrowhead touches the reference fragment – there is no need to render it as a box shape.

Part Decomposition
An object can have more than one lifeline coming from it. This allows for inter- and intra-object messages to be displayed on the same diagram.

State Invariant / Continuations
A state invariant is a constraint placed on a lifeline that must be true at run-time. It is shown as a rectangle with semi-circular ends.

A continuation has the same notation as a state invariant, but is used in combined fragments and can stretch across more than one lifeline.

This tutorial is collected from following Source and use as it is:


One Response

  1. please show me where to getting Boundary, control and entity elements?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: